EXERCISES [MAI 3.15] VECTORS AND KINEMATICS SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

1. (a) (3,5) and (11,11)
(b) velocity
$$v = \begin{pmatrix} 4 \\ 3 \end{pmatrix}$$
, speed $|v| = 5$
(c) $11\sqrt{2}$
(d) 10

2.

Cases	Vector AB	Velocity vector	Equation of motion
at point B(8,6) after 1 sec	$\begin{pmatrix} 6\\ 3 \end{pmatrix}$	$\begin{pmatrix} 6\\3 \end{pmatrix}$	$\vec{r} = \begin{pmatrix} 2\\ 3 \end{pmatrix} + t \begin{pmatrix} 6\\ 3 \end{pmatrix}$
at point B(8,6) after 3 sec	$\begin{pmatrix} 6\\ 3 \end{pmatrix}$	$\begin{pmatrix} 2\\1 \end{pmatrix}$	$\vec{r} = \begin{pmatrix} 2\\ 3 \end{pmatrix} + t \begin{pmatrix} 2\\ 1 \end{pmatrix}$

3. (a)
$$\mathbf{v}_1 = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}, \ \mathbf{v}_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
 speeds: $|\mathbf{v}_1| = \sqrt{9} = 3, \ |\mathbf{v}_2| = \sqrt{9} = 3$

(b) (5,6,7) satisfies \mathbf{r}_1 for t = 2 and \mathbf{r}_2 for t = 1

(c) They do not collide since at the point of intersection $t_1 \neq t_2$.

4. (a) (4,9,7)
(b)
$$t_1 = 2$$
 while $t_2 = 1$
(c) $|v_1| = \sqrt{21}$, $|v_2| = \sqrt{13}$
(d) $d = \sqrt{21}$.

5. (a)
$$\sqrt{16+9} = \sqrt{25} = 5$$

(b) $r = \begin{pmatrix} -2 \\ 1 \end{pmatrix} + t \begin{pmatrix} 4 \\ 3 \end{pmatrix}$ (not unique)
(b) $\begin{pmatrix} -2 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} 4 \\ 3 \end{pmatrix} = \begin{pmatrix} 6 \\ 7 \end{pmatrix}$ (so B is (6, 7))

6. (a) (i)
$$\overrightarrow{AB} = \begin{pmatrix} 3 \\ -4 \\ 5 \end{pmatrix}$$
 (ii) speed = $\sqrt{3^2 + 4^2 + 5^2} = \sqrt{50}$ (= $5\sqrt{2}$)
(b) $r = \begin{pmatrix} 6 \\ -2 \\ 10 \end{pmatrix} + t \begin{pmatrix} 3 \\ -4 \\ 5 \end{pmatrix}$
7. (a) $p = 2 \Rightarrow \begin{pmatrix} 0 \\ 12 \end{pmatrix} + 2 \begin{pmatrix} 5 \\ -3 \end{pmatrix} = \begin{pmatrix} 10 \\ 6 \end{pmatrix}$
(b) (i) equating components
 $0 + 5p = 14 + q$,
 $12 - 3p = 0 + 3q$
 $\Rightarrow p = 3, q = 1$
(ii) The coordinates of P are (15, 3)

(c) No, they do not start at the same time since $p \neq q$. Car 1 starts two seconds earlier.

8.

Equation of motion	Velocity \vec{v} (in terms of <i>t</i>)	Acceleration \vec{a} (in terms of <i>t</i>)
$\vec{r} = \begin{pmatrix} 3t+2\\5t+1 \end{pmatrix}$	$\vec{v} = \begin{pmatrix} 3\\5 \end{pmatrix}$	$\vec{a} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
$\vec{r} = \begin{pmatrix} 3+t\\ 2-t \end{pmatrix}$	$\vec{v} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$	$\vec{a} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
$\vec{r} = \begin{pmatrix} 3t+7\\2t^2-t+1 \end{pmatrix}$	$\vec{v} = \begin{pmatrix} 3\\ 4t-1 \end{pmatrix}$	$\vec{a} = \begin{pmatrix} 0 \\ 4 \end{pmatrix}$
$\vec{r} = \begin{pmatrix} t^2 + 1 \\ t^3 + 1 \end{pmatrix}$	$\vec{v} = \begin{pmatrix} 2t \\ 3t^2 \end{pmatrix}$	$\vec{a} = \begin{pmatrix} 2 \\ 6t \end{pmatrix}$
$\vec{r} = \begin{pmatrix} 5t^2\\ 2\sin t \end{pmatrix}$	$\vec{v} = \begin{pmatrix} 10t\\ 2\cos t \end{pmatrix}$	$\vec{a} = \begin{pmatrix} 10\\ -2\sin t \end{pmatrix}$

9. (a)
$$\vec{v} = \begin{pmatrix} -5\pi \sin \frac{\pi}{2}t \\ 5\pi \cos \frac{\pi}{2}t \end{pmatrix}, \ \vec{a} = \begin{pmatrix} -\frac{5\pi^2}{2} \cos \frac{\pi}{2}t \\ -\frac{5\pi^2}{2} \sin \frac{\pi}{2}t \end{pmatrix}$$

For $t = 0$, $\vec{r} = \begin{pmatrix} 10 \\ 0 \end{pmatrix}, \ \vec{v} = \begin{pmatrix} 0 \\ 5\pi \end{pmatrix}, \ \vec{a} = \begin{pmatrix} -\frac{5\pi^2}{2} \\ 0 \end{pmatrix}$
(b) speed = $|\vec{v}| = \sqrt{\left(-5\pi \sin \frac{\pi}{2}t\right)^2 + \left(5\pi \cos \frac{\pi}{2}t\right)^2} = \sqrt{25\pi^2 \left(\sin^2 \frac{\pi}{2}t + \cos^2 \frac{\pi}{2}t\right)} = 5\pi$
(c) $x^2 + y^2 = 100$

B. Paper 2 questions (LONG)

10. (a) (i)
$$r_{1} = \begin{bmatrix} 16 \\ 12 \end{bmatrix} + t \begin{bmatrix} 12 \\ -5 \end{bmatrix}$$
 $t = 0 \Rightarrow r_{1} = \begin{bmatrix} 16 \\ 12 \end{bmatrix}$ $|r_{1}| = \sqrt{(16^{2} + 12^{2})} = 20$
(ii) Velocity vector $= \begin{bmatrix} 12 \\ -5 \end{bmatrix} \Rightarrow$ speed $= \sqrt{(12^{2} + (-5)^{2})} = 13$
(b) $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 16 \\ 12 \end{bmatrix} + t \begin{bmatrix} 12 \\ -5 \end{bmatrix} \Rightarrow \frac{x - 16}{2} = \frac{y - 12}{-5} \Rightarrow 5x - 80 = 144 - 12y \Rightarrow 5x + 12y = 224$
(c) $v_{1} = \begin{bmatrix} 12 \\ -5 \end{bmatrix}$ $v_{2} = \begin{bmatrix} 2.5 \\ 6 \end{bmatrix}$, $v_{1}.v_{2} = \begin{bmatrix} 12 \\ -5 \end{bmatrix} \begin{bmatrix} 2.5 \\ 6 \end{bmatrix} = 30 - 30 \Rightarrow v_{1}.v_{2} = 0 \Rightarrow \theta = 90^{\circ}$
(d) (i) $\frac{x - 23}{2.5} = \frac{y + 5}{6} \Rightarrow 6x - 138 = 2.5y + 12.5 \Rightarrow 12x - 276 = 5y + 25 \Rightarrow 12x - 5y = 301$
(ii) $\frac{5x + 12y = 224}{12x - 5y = 301} \Rightarrow \frac{25x + 60y = 1120}{144x - 60y = 3612} \Rightarrow (x,y) = (28, 7)$
(e) $16 + 12t = 23 + 2.5t \Rightarrow 9.5t = 7$
 $12 - 5t = -5 + 6t \Rightarrow 17 = 11t$
 $\frac{7}{9.5} \neq \frac{17}{11} \Rightarrow$ planes cannot be at the same place at the same time
OR
 $r_{1} = \begin{bmatrix} 28 \\ 7 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 28 \\ 7 \end{bmatrix} = \begin{bmatrix} 16 \\ 12 \end{bmatrix} + t \begin{bmatrix} 12 \\ -5 \end{bmatrix} \Leftrightarrow t = 1$
 $r_{2} = \begin{bmatrix} 28 \\ 7 \end{bmatrix} \Leftrightarrow \begin{bmatrix} 28 \\ 7 \end{bmatrix} = \begin{bmatrix} 28 \\ -5 \end{bmatrix} + t \begin{bmatrix} 2.5 \\ 6 \end{bmatrix} \Leftrightarrow t = 2$
11. (a) At $t = 2$, $\begin{pmatrix} 2 \\ 0 \end{pmatrix} + 2 \begin{pmatrix} 0.7 \\ 1 \end{pmatrix} = \begin{pmatrix} 3.4 \\ 2 \\ 0 \end{bmatrix}$
Distance from $(0, 0) = \sqrt{3.4^{2} + 2^{2}} = 3.94$ m
(b) $\begin{bmatrix} 0.7 \\ 1 \\ 2 \end{bmatrix} = \sqrt{0.7^{2} + 1^{2}} = 1.22$ m s⁻¹
(c) $x = 2 + 0.7t$ and $y = t$
 $x = 5.86$ and $y = 5.52$ (or $x = \frac{170}{29}$ and $y = \frac{160}{29}$)
(c) The time of the collision may be found by solving
 $\begin{bmatrix} 5.86 \\ 5.52 \end{bmatrix} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} + \begin{pmatrix} 0.7 \\ 1 \end{pmatrix} t \Rightarrow t = 5.52$ s
[te collision cecurved 5.52 seconds after the vehicles set out]. Distance t found the the motoever t_{2} is a product of t_{2} is a product of t_{2} of t_{2} is t_{2} .

Distance *d* travelled by the motorcycle is given by

$$d = \begin{vmatrix} 5.86\\ 5.52 \end{vmatrix} - \begin{pmatrix} 0\\ 2 \end{vmatrix} = \sqrt{(5.86)^2 + (3.52)^2} = \sqrt{46.73} = 6.84 \text{ m}$$

Speed of the motorcycle = $\frac{d}{t} = \frac{6.84}{5.52} = 1.24 \text{ m s}^{-1}$

12. (a) speed=
$$\sqrt{3^2 + 4^2 + 10^2} = \sqrt{125} = 5\sqrt{5}$$
, 11.2, (metres per minute)
(b) Velocity vector: $\begin{pmatrix} 3\\16\\39 \end{pmatrix} - \begin{pmatrix} -5\\10\\23 \end{pmatrix}$ Dividing by 2 to give $\begin{pmatrix} 4\\3\\8 \end{pmatrix}$
 $\begin{pmatrix} x\\y\\z \end{pmatrix} = \begin{pmatrix} -5\\10\\23 \end{pmatrix} + t \begin{pmatrix} 4\\3\\8 \end{pmatrix}$
(c) (i) At Q, $\begin{pmatrix} 3\\2\\7 \end{pmatrix} + t \begin{pmatrix} 3\\4\\10 \end{pmatrix} = \begin{pmatrix} -5\\10\\23 \end{pmatrix} + t \begin{pmatrix} 4\\3\\8 \end{pmatrix} \Rightarrow 3 + 3t = -5 + 4t \Rightarrow t = 8$
after 8 minutes, 13:08
(ii) Substituting for t: $x = 27$, $y = 34$, $z = 87$ i.e. $(27, 34, 87)$
(d) direction vectors $d_1 = \begin{pmatrix} 3\\4\\10 \end{pmatrix}$ and $d_2 = \begin{pmatrix} 4\\3\\8 \end{pmatrix}$ $d_1 \cdot d_2 = 104$
 $\cos\theta = \frac{104}{\sqrt{125}\sqrt{89}} = 0.98601...\theta = 0.167(radians)$ (accept $\theta = 9.59^\circ$)
13. (a) (i) $\overrightarrow{AB} = \begin{pmatrix} 200\\400 \end{pmatrix} - \begin{pmatrix} -600\\-200 \end{pmatrix} = \begin{pmatrix} 800\\600 \end{pmatrix}$
(ii) $|\overrightarrow{AB}| = \sqrt{800^2 + 600^2} = 1000$ unit vector $= \frac{1}{1000} \begin{pmatrix} 800\\600 \end{pmatrix} = \begin{pmatrix} 0.8\\0.6 \end{pmatrix}$
(b) (i) $v = 250 \begin{pmatrix} 0.8\\0.6 \end{pmatrix} = \begin{pmatrix} 200\\150 \end{pmatrix}$
(ii) $|\overrightarrow{AB}| = 1000$
Time $= \frac{1000}{250} = 4$ (hours)
over town B at 16:00 (4 pm, 4:00 pm)

(c) *Note:* There are a variety of approaches. The table shows some of them

Time for A to B to C = 9 hours	Distance from A to B to C = 2250 km	Fuel used from A to B = $1800 \times 4 = 7200$ litres
Light goes on after 16000 litres	Light goes on after 16000 litres	Fuel remaining = 9800 litres
Time for 16 000 litres	Distance on 16000 litres	Hours before light
$=\frac{16000}{1800}$ (=8.889)	$=\frac{16000}{1800}\times250$	$\frac{8800}{1800} (= 4.889)$
Time remaining is = $\frac{1}{9}(=0.111)$ hour	• (= 2222.22) km	Time remaining is = $\frac{1}{9}(=0.111)$ hour
Distance $=\frac{1}{9} \times 250$	Distance to C = $2250 - 2222.22$ = 27.8 km	Distance $=\frac{1}{9} \times 250$
= 27.8 km	= 27.8 km	= 27.8 km

14. (a) At 13:00,
$$t = 1 \Rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 28 \end{pmatrix} + 1 \times \begin{pmatrix} 6 \\ -8 \end{pmatrix} = \begin{pmatrix} 6 \\ 20 \end{pmatrix}$$

(b) (i) Velocity vector: $\begin{pmatrix} 6 \\ -8 \end{pmatrix} (\operatorname{km} h^{-1})$ (ii)Speed = $\sqrt{(6^2 + (-8)^2)}$:= 10; 10 km h^{-1}
(c) $\begin{aligned} x = 6t \\ y = 28 - 8t \end{pmatrix} \Rightarrow \frac{x}{6} = \frac{y - 28}{-8} \Rightarrow 4x + 3y = 84$
(d) They collide if $\begin{pmatrix} 18 \\ 4 \end{pmatrix}$ lies on path;
EITHER (18, 4) lies on $4x + 3y = 84$
 $\Rightarrow 4 \times 18 + 3 \times 4 = 84 \Rightarrow 72 + 12 = 84; OK;$
 $x = 18 \Rightarrow 18 = 6t \Rightarrow t = 3, collide at 15:00$
OR $\begin{pmatrix} 18 \\ 9 = (28) + t \begin{pmatrix} 6 \\ -8 \end{pmatrix}$ for some $t, \Leftrightarrow \left\{ \frac{18 = 6t}{and 4 = 28 - 8t} \right\} \Leftrightarrow \left\{ \frac{t = 3}{and t = 3} \right\}$
They collide at 15:00
(c) $\begin{pmatrix} x \\ y = \begin{pmatrix} 18 \\ 4 \end{pmatrix} + (t - 1) \begin{pmatrix} 5 \\ 22 \end{pmatrix} = \begin{pmatrix} 18 + 5t - 5 \\ 4 + 12t - 12 \end{pmatrix} = \begin{pmatrix} 13 \\ -8 \end{pmatrix} + t \begin{pmatrix} 5 \\ 12 \end{pmatrix}$
(i) At $t = 3, \quad \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -13 + 3 \times 5 \\ -8 + 32 \end{pmatrix} = \begin{pmatrix} 288 \\ 28 \end{pmatrix}$
distance = $\sqrt{(10^2 + 24^2)} = \sqrt{(676)} = 26$ km apart
15. (a) (i) $\overline{OA} = \begin{pmatrix} 240 \\ 70 \end{pmatrix} OA = \sqrt{240^2 + 70^2} = 250$
unit vector = $\frac{1}{250} \begin{pmatrix} 240 \\ 70 \end{pmatrix} = \begin{pmatrix} 0.96 \\ 0.28 \end{pmatrix}$
(ii) $t = \frac{240}{288} = \frac{5}{6}$ hr (= 50 min)
(b) $\overline{AB} = \begin{pmatrix} 480 - 240 \\ 250 - 70 \end{pmatrix} = \begin{pmatrix} 288 \\ 84 \end{pmatrix}$
(iii) $t = \frac{240}{228} = \frac{5}{6}$ hr (= 50 min)
(b) $\overline{AB} = \begin{pmatrix} 480 - 240 \\ 250 - 70 \end{pmatrix} = \begin{pmatrix} 240 \\ 180 \end{pmatrix}$ $AB = \sqrt{240^2 + 180^2} = 300$
 $\cos \theta = \overline{OA \times AB} = \frac{200(200)}{(250)(300)} = 0.936 \Rightarrow \theta = 20.6^{\circ}$
(c) (i) $\overline{AX} = \begin{pmatrix} 339 - 240 \\ 218 - 70 \end{pmatrix} = \begin{pmatrix} 99 \\ 168 \end{pmatrix}$
(ii) $-\frac{3}{4} \cdot \frac{1}{2} \cdot \frac{2}{2(16)} = -720 + 720 = 0$
 $\Rightarrow n \perp AB$
(iii) Projection of \overline{AX} in the direction of *n* is
 $XY = \frac{1}{8} \begin{pmatrix} 99 \\ 168 \end{pmatrix} \cdot \begin{pmatrix} -3 \\ 4 \end{pmatrix} = \frac{-297 + 672}{5} = 75$
(d) $AX = \sqrt{99^2 + 168^2} = 195$
 $AY = \sqrt{195^2 - 75^2} = 180$ km

16. (a)
$$\binom{18}{24} = 30 \text{ km h}^{-1}$$
 $\binom{36}{-16} = \sqrt{36^2 + (-16)^2} = 39.4$
(b) (i) After ½ hour, position vectors are $\binom{9}{12}$ and $\binom{18}{-8}$
(ii) Aft 6.30 am, vector joining their positions is
 $\binom{9}{12} - \binom{18}{-8} = \binom{-9}{20} (\text{ or } \binom{9}{-20})$
 $\binom{-9}{12} = \sqrt{481} (= 21.9 \text{ km to 3 sf})$
(c) The Toyundai must continue until its position vector is $\binom{18}{k}$
Clearly $k = 24$, *ie* position vector $\binom{18}{24}$.
To reach this position, it must travel for 1 hour in total.
Hence the erew starts work at 7.00 am
(d) Southern (Chryssault) crew lays 800 × 5 = 4000 m
Northern (Toyundai) crew lays 800 × 5 = 4000 m
Total by 11.30 am = 7.6 km
Their starting points were $24 - (-8) = 32$ km apart
Hence they are now $32 - 7.6 = 22.4$ km apart
Hence they are now $32 - 7.6 = 24.4$ km apart
Hence they are now $32 - 7.6 = 24.4$ km apart
Hence they are now $32 - 7.6 = 24.4$ km apart
Hence they are now $32 - 7.6 = 24.4$ km apart
Hence they are now $32 - 7.6 = 24.4$ km apart
Hence they are now $32 - 7.6 = 24.4$ km apart
Hence they are now $32 - 7.6 = 24.4$ km apart
Hence they are now $32 - 7.6 = 24.4$ km apart
Hence they are now $32 - 7.6 = 24.4$ km apart
Hence they are now $32 - 7.6 = 24.4$ km apart
Hence they are now $32 - 7.6 = 24.4$ km apart
Hence they are now $32 - 7.6 = 24.4$ km apart
Hence they are now $32 - 7.6 = 24.4$ km apart
Hence they are now $32 - 7.6 = 24.4$ km apart
Hence they are now $32 - 7.6 = 24.4$ km apart
Hence they are now $32 - 7.6 = 24.4$ km apart
Hence they are now $32 - 7.6 = 24.4$ km hence the the nearest minute)
17. (a) unit vector $(e_b) = \frac{1}{\sqrt{3^2 + 4^2 + 0^2}} \binom{3}{4} = \binom{0.6}{0.8}$, direction vector for $b_b v_b = 18e_b = \binom{10.8}{14.4}$
 0
 $b = b_0 + tv_b = \binom{0}{5} + t\binom{10.8}{40} = \binom{0.6}{0.8}$, direction vector for $b_b v_b = 18e_b = \binom{10.8}{14.4}$
 0
(b) (i) $t = 0 \Rightarrow (49, 32, 0)$
(ii) $v_h = \sqrt{(-48)^2 + (-24)^2 + 6^2} = 54(\text{km h}^{-1})$
(c) (i) At R, $\binom{10.4}{14.4} = \binom{49-48t}{52-24t}$
 $t = \frac{5}{6} (= 0.833)$ (hours)
(ii) For $t = \frac{5}{6}$ into