EXERCISES [MAI 3.15]

VECTORS AND KINEMATICS

SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

1. (a) $(3,5)$ and $(11,11)$
(b) velocity $v=\binom{4}{3}$, speed $|v|=5$
(c) $11 \sqrt{2}$
(d) 10
2.

Cases	Vector AB	Velocity vector	Equation of motion
at point $\mathrm{B}(8,6)$ after 1 sec	$\binom{6}{3}$	$\binom{6}{3}$	$\vec{r}=\binom{2}{3}+t\binom{6}{3}$
at point $\mathrm{B}(8,6)$ after 3 sec	$\binom{6}{3}$	$\binom{2}{1}$	$\vec{r}=\binom{2}{3}+t\binom{2}{1}$

3. (a) $\boldsymbol{v}_{1}=\left(\begin{array}{l}2 \\ 1 \\ 2\end{array}\right), \boldsymbol{v}_{2}=\left(\begin{array}{l}1 \\ 2 \\ 2\end{array}\right)$ speeds: $\left|\boldsymbol{v}_{1}\right|=\sqrt{9}=3,\left|\boldsymbol{v}_{2}\right|=\sqrt{9}=3$
(b) $(5,6,7)$ satisfies \boldsymbol{r}_{1} for $t=2$ and \boldsymbol{r}_{2} for $t=1$
(c) They do not collide since at the point of intersection $t_{1} \neq t_{2}$.
4. (a) $(4,9,7)$
(b) $t_{1}=2$ while $t_{2}=1$
(c) $\left|v_{1}\right|=\sqrt{21},\left|v_{2}\right|=\sqrt{13}$
(d) $d=\sqrt{21}$.
5. (a) $\sqrt{16+9}=\sqrt{25}=5$
(b) $\quad \boldsymbol{r}=\binom{-2}{1}+t\binom{4}{3} \quad$ (not unique)
(b) $\quad\binom{-2}{1}+2\binom{4}{3}=\binom{6}{7} \quad($ so B is $(6,7))$
6. (a) (i) $\overrightarrow{\mathrm{AB}}=\left(\begin{array}{c}3 \\ -4 \\ 5\end{array}\right) \quad$ (ii) speed $=\sqrt{3^{2}+4^{2}+5^{2}}=\sqrt{50} \quad(=5 \sqrt{2})$
(b) $\quad \boldsymbol{r}=\left(\begin{array}{c}6 \\ -2 \\ 10\end{array}\right)+t\left(\begin{array}{c}3 \\ -4 \\ 5\end{array}\right)$
7. (a) $p=2 \Rightarrow\binom{0}{12}+2\binom{5}{-3}=\binom{10}{6}$
(b) (i) equating components

$$
\begin{aligned}
& 0+5 p=14+q \\
& 12-3 p=0+3 q \\
& \Rightarrow p=3, q=1
\end{aligned}
$$

(ii) The coordinates of P are $(15,3)$
(c) No, they do not start at the same time since $p \neq q$. Car 1 starts two seconds earlier.
8.

Equation of motion	Velocity \vec{v} (in terms of \boldsymbol{t})	Acceleration \vec{a} (in terms of \boldsymbol{t})
$\vec{r}=\binom{3 t+2}{5 t+1}$	$\vec{v}=\binom{3}{5}$	$\vec{a}=\binom{0}{0}$
$\vec{r}=\binom{3+t}{2-t}$	$\vec{v}=\binom{1}{-1}$	$\vec{a}=\binom{0}{0}$
$\vec{r}=\binom{3 t+7}{2 t^{2}-t+1}$	$\vec{v}=\binom{3}{4 t-1}$	$\vec{a}=\binom{0}{4}$
$\vec{r}=\binom{t^{2}+1}{t^{3}+1}$	$\vec{v}=\binom{2 t}{3 t^{2}}$	$\vec{a}=\binom{2}{6 t}$
$\vec{r}=\binom{5 t^{2}}{2 \sin t}$	$\vec{v}=\binom{10 t}{2 \cos t}$	$\vec{a}=\binom{10}{-2 \sin t}$

9.

(a) $\vec{v}=\binom{-5 \pi \sin \frac{\pi}{2} t}{5 \pi \cos \frac{\pi}{2} t}, \vec{a}=\binom{-\frac{5 \pi^{2}}{2} \cos \frac{\pi}{2} t}{-\frac{5 \pi^{2}}{2} \sin \frac{\pi}{2} t}$

For $t=0, \vec{r}=\binom{10}{0}, \vec{v}=\binom{0}{5 \pi}, \vec{a}=\binom{-\frac{5 \pi^{2}}{2}}{0}$
(b) \quad speed $=|\vec{v}|=\sqrt{\left(-5 \pi \sin \frac{\pi}{2} t\right)^{2}+\left(5 \pi \cos \frac{\pi}{2} t\right)^{2}}=\sqrt{25 \pi^{2}\left(\sin ^{2} \frac{\pi}{2} t+\cos ^{2} \frac{\pi}{2} t\right)}=5 \pi$
(c) $x^{2}+y^{2}=100$

B. Paper 2 questions (LONG)

10. (a)
(i) $\quad \boldsymbol{r}_{1}=\left[\begin{array}{l}16 \\ 12\end{array}\right]+t\left[\begin{array}{c}12 \\ -5\end{array}\right] \quad t=0 \Rightarrow \boldsymbol{r}_{1}=\left[\begin{array}{l}16 \\ 12\end{array}\right] \quad\left|\boldsymbol{r}_{1}\right|=\sqrt{\left(16^{2}+12^{2}\right)}=20$
(ii) Velocity vector $=\left[\begin{array}{c}12 \\ -5\end{array}\right] \Rightarrow$ speed $=\sqrt{\left(12^{2}+(-5)^{2}\right)}=13$
(b) $\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}16 \\ 12\end{array}\right]+t\left[\begin{array}{c}12 \\ -5\end{array}\right] \Rightarrow \frac{x-16}{12}=\frac{y-12}{-5} \Rightarrow 5 x-80=144-12 y \Rightarrow 5 x+12 y=224$
(c) $\boldsymbol{v}_{1}=\left[\begin{array}{c}12 \\ -5\end{array}\right] \quad \boldsymbol{v}_{2}=\left[\begin{array}{c}2.5 \\ 6\end{array}\right], \quad \boldsymbol{v}_{1} \cdot \boldsymbol{v}_{2}=\left[\begin{array}{c}12 \\ -5\end{array}\right] \cdot\left[\begin{array}{c}2.5 \\ 6\end{array}\right]=30-30 \Rightarrow \boldsymbol{v}_{1} \cdot \boldsymbol{v}_{2}=0 \Rightarrow \theta=90^{\circ}$
(d) (i) $\frac{x-23}{2.5}=\frac{y+5}{6} \Rightarrow 6 x-138=2.5 y+12.5 \Rightarrow 12 x-276=5 y+25 \Rightarrow 12 x-5 y=301$
(ii) $\left.\left.\quad \begin{array}{l}5 x+12 y=224 \\ 12 x-5 y=301\end{array}\right\} \Rightarrow \begin{array}{l}25 x+60 y=1120 \\ 144 x-60 y=3612\end{array}\right\} \Rightarrow(x, y)=(28,7)$
(e) $16+12 t=23+2.5 t \Rightarrow 9.5 t=7$
$12-5 t=-5+6 t \quad \Rightarrow 17=11 t$
$\frac{7}{9.5} \neq \frac{17}{11} \Rightarrow$ planes cannot be at the same place at the same time
OR
$\boldsymbol{r}_{1}=\left[\begin{array}{c}28 \\ 7\end{array}\right] \Leftrightarrow\left[\begin{array}{c}28 \\ 7\end{array}\right]=\left[\begin{array}{l}16 \\ 12\end{array}\right]+t\left[\begin{array}{c}12 \\ -5\end{array}\right] \Leftrightarrow t=1$
$\boldsymbol{r}_{2}=\left[\begin{array}{c}28 \\ 7\end{array}\right] \Leftrightarrow\left[\begin{array}{c}28 \\ 7\end{array}\right]=\left[\begin{array}{c}23 \\ -5\end{array}\right]+t\left[\begin{array}{c}2.5 \\ 6\end{array}\right] \Leftrightarrow t=2$
11. (a) At $t=2,\binom{2}{0}+2\binom{0.7}{1}=\binom{3.4}{2}$

Distance from $(0,0)=\sqrt{3.4^{2}+2^{2}}=3.94 \mathrm{~m}$
(b) $\left|\binom{0.7}{1}\right|=\sqrt{0.7^{2}+1^{2}}=1.22 \mathrm{~m} \mathrm{~s}^{-1}$
(c) $\quad x=2+0.7 t$ and $y=t$
$x-0.7 y=2$
(d) $y=0.6 x+2$ and $x-0.7 y=2$
$x=5.86$ and $y=5.52\left(\right.$ or $x=\frac{170}{29}$ and $\left.y=\frac{160}{29}\right)$
(e) The time of the collision may be found by solving
$\binom{5.86}{5.52}=\binom{2}{0}+\binom{0.7}{1} t \Rightarrow t=5.52 \mathrm{~s}$
[ie collision occurred 5.52 seconds after the vehicles set out].
Distance d travelled by the motorcycle is given by
$d=\left|\binom{5.86}{5.52}-\binom{0}{2}\right|=\sqrt{(5.86)^{2}+(3.52)^{2}}=\sqrt{46.73}=6.84 \mathrm{~m}$
Speed of the motorcycle $=\frac{d}{t}=\frac{6.84}{5.52}=1.24 \mathrm{~m} \mathrm{~s}^{-1}$
12. (a) speed $=\sqrt{3^{2}+4^{2}+10^{2}}=\sqrt{125}=5 \sqrt{5}, 11.2$, (metres per minute)
(b) Velocity vector: $\left(\begin{array}{c}3 \\ 16 \\ 39\end{array}\right)-\left(\begin{array}{c}-5 \\ 10 \\ 23\end{array}\right)$ Dividing by 2 to give $\left(\begin{array}{l}4 \\ 3 \\ 8\end{array}\right)$

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{c}
-5 \\
10 \\
23
\end{array}\right)+t\left(\begin{array}{l}
4 \\
3 \\
8
\end{array}\right)
$$

(c) (i) At $\mathrm{Q},\left(\begin{array}{l}3 \\ 2 \\ 7\end{array}\right)+t\left(\begin{array}{c}3 \\ 4 \\ 10\end{array}\right)=\left(\begin{array}{c}-5 \\ 10 \\ 23\end{array}\right)+t\left(\begin{array}{l}4 \\ 3 \\ 8\end{array}\right) \Rightarrow 3+3 t=-5+4 t \Rightarrow t=8$ after 8 minutes, 13:08
(ii) Substituting for $t: x=27, y=34, z=87$ i.e. $(27,34,87)$
(d) direction vectors $\boldsymbol{d}_{1}=\left(\begin{array}{c}3 \\ 4 \\ 10\end{array}\right)$ and $\boldsymbol{d}_{2}=\left(\begin{array}{l}4 \\ 3 \\ 8\end{array}\right) \quad \boldsymbol{d}_{1} \bullet \boldsymbol{d}_{2}=104$ $\cos \theta=\frac{104}{\sqrt{125} \sqrt{89}}=0.98601 \ldots \theta=0.167$ (radians) (accept $\theta=9.59^{\circ}$)
13. (a) (i) $\overrightarrow{\mathrm{AB}}=\binom{200}{400}-\binom{-600}{-200}=\binom{800}{600}$
(ii) $|\overrightarrow{\mathrm{AB}}|=\sqrt{800^{2}+600^{2}}=1000 \quad$ unit vector $=\frac{1}{1000}\binom{800}{600}=\binom{0.8}{0.6}$
(b) (i) $\quad \boldsymbol{v}=250\binom{0.8}{0.6}=\binom{200}{150}$
(ii) at $13: 00, t=1:\binom{x}{y}=\binom{-600}{-200}+1\binom{200}{150}=\binom{-400}{-50}$
(iii) $|\overrightarrow{\mathrm{AB}}|=1000$

Time $=\frac{1000}{250}=4$ (hours)
over town B at 16:00 ($4 \mathrm{pm}, 4: 00 \mathrm{pm}$)
(c) Note: There are a variety of approaches. The table shows some of them

Time for A to B to C $=9$ hours	Distance from A to B to C $=2250 \mathrm{~km}$	Fuel used from A to B $=1800 \times 4=7200$ litres
Light goes on after 16000 litres	Light goes on after 16000 litres	Fuel remaining $=9800$ litres
Time for 16000 litres $=\frac{16000}{1800}(=8.889)$	Distance on 16000 litres $=\frac{16000}{1800} \times 250$ Time remaining is $=\frac{1}{9}(=0.111)$ hour	Hours before light $(=2222.22) \mathrm{km}$
$\frac{8800}{1800}(=4.889)$ Time remaining is $=\frac{1}{9}(=0.111)$ hour		
Distance $=\frac{1}{9} \times 250$		
$=27.8 \mathrm{~km}$	Distance to C $=2250-2222.22$ $=27.8 \mathrm{~km}$	Distance $=\frac{1}{9} \times 250$ $=27.8 \mathrm{~km}$

14. (a) At $13: 00, t=1 \Rightarrow\binom{x}{y}=\binom{0}{28}+1 \times\binom{ 6}{-8}=\binom{6}{20}$
(b) (i) Velocity vector: :($\left.\begin{array}{c}6 \\ -8\end{array}\right)\left(\mathrm{km} \mathrm{h}^{-1}\right) \quad$ (ii)Speed $=\sqrt{\left(6^{2}+(-8)^{2}\right)} ;=10 ; 10 \mathrm{~km} \mathrm{~h}^{-1}$
(c) $\left.\begin{array}{l}x=6 t \\ y=28-8 t\end{array}\right\} \Rightarrow \frac{x}{6}=\frac{y-28}{-8} \Rightarrow 4 x+3 y=84$
(d) They collide if $\binom{18}{4}$ lies on path;

EITHER $(18,4)$ lies on $4 x+3 y=84$

$$
\Leftrightarrow 4 \times 18+3 \times 4=84 \Leftrightarrow 72+12=84 ; \mathrm{OK}
$$

$x=18 \Rightarrow 18=6 t \Rightarrow t=3$, collide at 15:00

$$
\text { OR } \quad\binom{18}{4}=\binom{0}{28}+t\binom{6}{-8} \text { for some } t, \Leftrightarrow\left\{\begin{array}{c}
18=6 t \\
\text { and } 4=28-8 t
\end{array}\right\} \Leftrightarrow\left\{\begin{array}{c}
t=3 \\
\text { and } t=3
\end{array}\right\}
$$

They collide at 15:00
(e) $\quad\binom{x}{y}=\binom{18}{4}+(t-1)\binom{5}{12}=\binom{18+5 t-5}{4+12 t-12}=\binom{13}{-8}+t\binom{5}{12}$
(f) At $t=3, \quad\binom{x}{y}=\binom{13+3 \times 5}{-8+3 \times 12}=\binom{28}{28}$
distance $=\sqrt{\left(10^{2}+24^{2}\right)}=\sqrt{(676)}=26 \mathrm{~km}$ apart
15. (a) (i) $\overrightarrow{\mathrm{OA}}=\binom{240}{70} \mathrm{OA}=\sqrt{240^{2}+70^{2}}=250$
unit vector $=\frac{1}{250}\binom{240}{70}=\binom{0.96}{0.28}$
(ii) $\overline{\boldsymbol{v}}=300\binom{0.96}{0.28}=\binom{288}{84}$
(iii) $t=\frac{240}{288}=\frac{5}{6} \mathrm{hr}(=50 \mathrm{~min})$
(b) $\overrightarrow{\mathrm{AB}}=\binom{480-240}{250-70}=\binom{240}{180} \quad \mathrm{AB}=\sqrt{240^{2}+180^{2}}=300$
$\cos \theta=\frac{\overrightarrow{\mathrm{OA}} \bullet \overrightarrow{\mathrm{AB}}}{\mathrm{OA} \times \mathrm{AB}}=\frac{(240)(240)+(70)(180)}{(250)(300)}=0.936 \Rightarrow \theta=20.6^{\circ}$
(c) (i) $\overrightarrow{\mathrm{AX}}=\binom{339-240}{238-70}=\binom{99}{168}$
(ii) $\binom{-3}{4} \cdot\binom{240}{180}=-720+720=0$
$\Rightarrow \boldsymbol{n} \perp \overrightarrow{\mathrm{AB}}$
(iii) Projection of $\overrightarrow{\mathrm{AX}}$ in the direction of \boldsymbol{n} is

$$
X Y=\frac{1}{5}\binom{99}{168} \cdot\binom{-3}{4}=\frac{-297+672}{5}=75
$$

(d) $\mathrm{AX}=\sqrt{99^{2}+168^{2}}=195$
$\mathrm{AY}=\sqrt{195^{2}-75^{2}}=180 \mathrm{~km}$
16. (a) $\left|\binom{18}{24}\right|=30 \mathrm{~km} \mathrm{~h}^{-1} \quad\left|\binom{36}{-16}\right|=\sqrt{36^{2}+(-16)^{2}}=39.4$
(b) (i) After $1 / 2$ hour, position vectors are $\binom{9}{12}$ and $\binom{18}{-8}$
(ii) At 6.30 am , vector joining their positions is

$$
\begin{aligned}
& \binom{9}{12}-\binom{18}{-8}=\binom{-9}{20}\left(\text { or }\binom{9}{-20}\right) \\
& \binom{-9}{20}=\sqrt{481}(=21.9 \mathrm{~km} \text { to } 3 \mathrm{sf})
\end{aligned}
$$

(c) The Toyundai must continue until its position vector is $\binom{18}{k}$

Clearly $k=24$, ie position vector $\binom{18}{24}$.
To reach this position, it must travel for 1 hour in total.
Hence the crew starts work at 7.00 am
(d) Southern (Chryssault) crew lays $800 \times 5=4000 \mathrm{~m}$

Northern (Toyundai) crew lays $800 \times 4.5=3600 \mathrm{~m}$
Total by $11.30 \mathrm{am}=7.6 \mathrm{~km}$
Their starting points were $24-(-8)=32 \mathrm{~km}$ apart
Hence they are now $32-7.6=24.4 \mathrm{~km}$ apart
(e) Position vector of Northern crew at 11.30 am is $\binom{18}{24-3.6}=\binom{18}{20.4}$

Distance to base camp $=\left|\binom{18}{20.4}\right|=27.2 \mathrm{~km}$
Time to cover this distance $=\frac{27.2}{30} \times 60=54.4 \mathrm{~min}=54$ minutes (to the nearest minute)
17. (a) unit vector $\left(e_{b}\right)=\frac{1}{\sqrt{3^{2}+4^{2}+0^{2}}}\left(\begin{array}{l}3 \\ 4 \\ 0\end{array}\right)=\left(\begin{array}{c}0.6 \\ 0.8 \\ 0\end{array}\right)$, direction vector for $\boldsymbol{b}, \boldsymbol{v}_{\boldsymbol{b}}=18 \boldsymbol{e}_{\boldsymbol{b}}=\left(\begin{array}{c}10.8 \\ 14.4 \\ 0\end{array}\right)$
$\boldsymbol{b}=\boldsymbol{b}_{0}+\boldsymbol{t} \boldsymbol{v}_{\boldsymbol{b}}=\left(\begin{array}{l}0 \\ 0 \\ 5\end{array}\right)+t\left(\begin{array}{c}10.8 \\ 14.4 \\ 0\end{array}\right)$
(b) (i) $t=0 \Rightarrow(49,32,0)$
(ii) $v_{h}=\sqrt{(-48)^{2}+(-24)^{2}+6^{2}}=54\left(\mathrm{~km} \mathrm{~h}^{-1}\right)$
(c) (i) At $\mathrm{R},\left(\begin{array}{c}10.8 t \\ 14.4 t \\ 5\end{array}\right)=\left(\begin{array}{c}49-48 t \\ 32-24 t \\ 6 t\end{array}\right)$

$$
t=\frac{5}{6}(=0.833) \text { (hours) }
$$

(ii) For $t=\frac{5}{6}$ into expression for b or $h, \quad(9,12,5)$

